Приложение 1 к РПД Технология разработки программного обеспечения 01.03.02 Прикладная математика и информатика Направленность (профиль) Управление данными и машинное обучение Форма обучения — очная Год набора — 2021

МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ ОБУЧАЮЩИХСЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ (МОДУЛЯ)

1.	Кафедра	Математики, физики и информационных технологий
2.	Направление подготовки	01.03.02 Прикладная математика и информатика
3.	Направленность (профиль)	Управление данными и машинное обучение
4.	Дисциплина (модуль)	Б1.О.17.03 Технология разработки программного обеспечения
5.	Форма обучения	Очная
6.	Год набора	2021

І. Методические рекомендации

1.1 Методические рекомендации по организации работы студентов во время проведения лекционных занятий

- В ходе лекций преподаватель излагает и разъясняет основные, наиболее сложные понятия темы, а также связанные с ней теоретические и практические проблемы, дает рекомендации для практического занятия и указания для выполнения самостоятельной работы.
- В ходе лекционных занятий обучающемуся необходимо вести конспектирование учебного материала. Обращать внимание на категории, формулировки, раскрывающие содержание изучаемой дисциплины, научные выводы и практические рекомендации, положительный опыт в ораторском искусстве.
- Желательно оставить в рабочих конспектах поля, на которых делать пометки, подчеркивающие особую важность тех или иных теоретических положений. Рекомендуется активно задавать преподавателю уточняющие вопросы с целью уяснения теоретических положений, разрешения спорных ситуаций.

1.2 Методические указания к выполнению лабораторных работ

- Лабораторные работы сочетают элементы теоретического исследования и практической работы. Выполняя лабораторные работы, обучающиеся лучше усваивают учебный материал, так как многие определения, казавшиеся отвлеченными, становятся вполне конкретными, происходит соприкосновение теории с практикой, что в целом содействует пониманию сложных вопросов науки и становлению обучающихся как будущих специалистов.
- Выполнение лабораторных работ направлено на:
 - » обобщение, систематизацию, углубление теоретических знаний по конкретным темам учебной дисциплины;
 - > формирование умений применять полученные знания в практической деятельности;
 - > развитие аналитических, проектировочных, конструктивных умений;
 - > выработку самостоятельности, ответственности и творческой инициативы.
- Лабораторные занятия как вид учебной деятельности должны проводиться в специально оборудованных лабораториях, где выполняются лабораторные работы (задания).
- Форма организации обучающихся для проведения лабораторного занятия фронтальная, групповая и индивидуальная — определяется преподавателем, исходя из темы, цели, порядка выполнения работы.
- Результаты выполнения лабораторного работы оформляются обучающимися в виде отчета, форма и содержание которого определяются требованиями соответствующей работы.

1.3 Проведение занятий в интерактивной форме

- Интерактивное обучение представляет собой способ познания, осуществляемый в формах совместной деятельности обучающихся, т.е. все участники образовательного процесса взаимодействуют друг с другом, совместно решают поставленные проблемы, моделируют ситуации, обмениваются информацией, оценивают действие коллег и свое собственное поведение, погружаются в реальную атмосферу делового сотрудничества по разрешению проблем.
- Интерактивная форма обучения реализуется в виде проблемных лекций, коллективных решениях творческих задач и использовании метода проектов.
- Проблемная лекция. На этой лекции новое знание вводится через проблемность вопроса, задачи или ситуации. При этом процесс познания студентов в сотрудничестве и диалоге с преподавателем приближается к исследовательской деятельности. Разрешение проблемной ситуации происходит путем организации направления поиска ее решения, выдвижения гипотез и их проверки, решения задач различными способами, нахождения наиболее рационального пути решения и т.д.; анализа полученного результата, обсуждения противоречий или неоднозначности выводов и т.п.
- **Коллективные решения творческих задач**. Под творческими заданиями понимаются такие учебные задания, которые требуют от обучающихся не простого воспроизводства информации, а творчества, поскольку задания содержат больший или меньший элемент неизвестности и имеют, как правило, несколько подходов, несколько методов решения.
- **Метод проектов** это совокупность учебно-познавательных приемов, которые позволяют решить ту или иную проблему в результате самостоятельных действий учащихся с обязательной презентацией этих результатов.

1.4 Методические рекомендации к самостоятельной работе

- Самостоятельная работа планируемая учебная, учебно-исследовательская, научноисследовательская работа студентов, выполняемая во внеаудиторное время по заданию и при методическом руководстве преподавателя, но без его непосредственного участия (при частичном непосредственном участии преподавателя, оставляющем ведущую роль за работой студентов).
- Самостоятельная работа студентов (далее СРС) в ВУЗе является важным видом учебной и научной деятельности студента. СРС играет значительную роль в рейтинговой технологии обучения. Обучение в ВУЗе включает в себя две, практически одинаковые по объему и взаимовлиянию части процесса обучения и процесса самообучения. Поэтому СРС должна стать эффективной и целенаправленной работой студента.
- К современному специалисту общество предъявляет достаточно широкий перечень требований, среди которых немаловажное значение имеет наличие у выпускников определенных способностей и умения самостоятельно добывать знания из различных источников, систематизировать полученную информацию, давать оценку конкретной ситуации. Формирование такого умения происходит в течение всего периода обучения через участие студентов в практических занятиях, выполнение контрольных заданий и тестов, написание курсовых и выпускных квалификационных работ. При этом СРС играет решающую роль в ходе всего учебного процесса.
- В процессе самостоятельной работы студент приобретает навыки самоорганизации, самоконтроля, самоуправления, саморефлексии и становится активным самостоятельным субъектом учебной деятельности.
- Формы самостоятельной работы студентов разнообразны. Они включают в себя:
 - изучение учебной, научной и методической литературы, материалов периодических изданий с привлечением электронных средств официальной, статистической, периодической и научной информации;
 - подготовку докладов и рефератов, написание курсовых и выпускных квалификационных работ;
 - участие в работе студенческих конференций, комплексных научных исследованиях.
- Самостоятельная работа приобщает студентов к научному творчеству, поиску и решению актуальных современных проблем.

 Основной формой самостоятельной работы студента является изучение конспекта лекций, их дополнение, рекомендованной литературы, активное участие на практических и лабораторных занятиях.

1.5 Методические рекомендации по решению тестовых заданий

- Тестовая система предусматривает вопросы/задания, на которые обучающийся должен дать один или несколько вариантов правильного ответа из предложенного списка ответов. При поиске ответа необходимо проявлять внимательность.
- При отсутствии какого—либо одного ответа на вопрос, предусматривающий множественный выбор, весь ответ считается неправильным.
- Ответы правильные выделяются в тесте подчеркиванием или любым другим допустимым символом.

1.6 Учебный проект

- В процессе выполнения комплекта лабораторных работ объем получаемых знаний и навыков накапливается от задания к заданию. При этом каждая последующая работа, углубляя понимание, позволяет выполнять задание более точно и правильно. Очень часто ранее выполненные работы имеет смысл уточнить в свете вновь полученных знаний. Для приведения всех работ в согласованное и уточненное состояние имеет смысл завершить лабораторный практикум защитой проекта, который будет включать окончательный вариант всех выполненных работ. Защиту проекта можно проводить в форме так называемого, круглого стола. Это позволяет обогатить опыт всех учащихся посредством публичного выступления и последующего участия в обсуждении.
- Защита проекта, результирующего комплекс лабораторных работ, оценивается преподавателем как отдельная работа и входит в общую балльную оценку по дисциплине. Необходимо отметить особенную эффективность дополнения оценки преподавателя баллами, выставляемыми студентами друг другу по результатам всех выступлений. Для этих целей выделяется некоторое количество баллов, например, 5, и каждый студент распределяет эти баллы в любой пропорции между наиболее понравившимися участниками круглого стола, за исключением себя. Такое включение студентов в оценивание работ друг друга формирует у них более ответственное отношение как к своей работе, так и к работам других студентов.

1.7 Методические рекомендации по подготовке презентации

Алгоритм создания презентации:

- 1 этап определение цели презентации
- 2 этап подробное раскрытие информации,
- 3 этап основные тезисы, выводы.

Следует использовать 10-15 слайдов. При этом:

- первый слайд титульный, предназначен для размещения названия презентации, имени докладчика и его контактной информации;
- на втором слайде необходимо разместить содержание презентации, а также краткое описание основных вопросов;
- оставшиеся слайды имеют информативный характер.

Обычно подача информации осуществляется по плану: тезис – аргументация – вывод.

Требования к оформлению и представлению презентации:

- Читабельность (видимость из самых дальних уголков помещения и с различных устройств), текст должен быть набран 24-30-ым шрифтом.
- Тщательно структурированная информация.
- Наличие коротких и лаконичных заголовков, маркированных и нумерованных списков.
- Каждому положению (идее) надо отвести отдельный абзац.
- Главную идею надо выложить в первой строке абзаца.
- Использовать табличные формы представления информации (диаграммы, схемы) для иллюстрации важнейших фактов, что даст возможность подать материал компактно и наглядно.
- Графика должна органично дополнять текст.
- Выступление с презентацией длится не более 10 минут;

1.8 Методические рекомендации по подготовке доклада

Алгоритм создания доклада:

- 1 этап определение темы доклада
- 2 этап определение цели доклада
- 3 этап подробное раскрытие информации
- 4 этап формулирование основных тезисов и выводов.

Требования к теме доклада:

Темы докладов формулируются таким образом, чтобы расширить знания студента о конкретном программном продукте или компьютерном устройстве, а также дать представление о возможности и использования в профессиональной деятельности, например:

- 1. Назначение и возможности редакторов трехмерной графики.
- 2. Сравнительный анализ возможностей текстовых процессоров пакетов MS Office и LibreOffice.
- 3. Обзор возможностей настольной издательской системы MS Publisher на примере создания информационного буклета
- 4. Сублимационная печать. Назначение, преимущества и недостатки.

Требования к оформлению доклада:

- 1. Объем доклада 5 страниц (без титульного листа и списка источников).
- 2. Титульный лист должен быть оформлен по образцу (имеется файл с образцом).
- 3. Основной текст работы оформлен в соответствии с требованиями, указанными ниже.
- 4. В случае использования в тексте таблиц и/или рисунков на каждый объект должна быть ссылка в тексте работы. Например, «... основные виды программных средств представлены ниже (см. Таблица 1)» или «... схему передачи информации можно увидеть на рис. 1».
- 5. Количество источников должно быть не менее трех, на все должны быть ссылки внутри текста.
- 6. Список используемых источников должен быть оформлен в соответствии с требованиями, указанными ниже.

1.9 Методические рекомендации по подготовке к сдаче экзамена

- Экзамен осуществляется в рамках завершения изучения дисциплины (модуля) и позволяет определить качество усвоения изученного материала, а также степень сформированности компетенций.
- Студенты обязаны сдавать экзамен в строгом соответствии с утвержденными учебными планами, разработанными согласно образовательным стандартам высшего образования.
- Экзамен принимается по билетам, содержащим два вопроса. Экзаменационные билеты утверждаются на заседании кафедры.

- Экзаменатору предоставляется право задавать студентам вопросы в рамках билета, а также, помимо теоретических вопросов, предлагать задачи практико-ориентированной направленности по программе данного курса.
- При явке на экзамен студенты обязаны иметь при себе зачетную книжку, которую они предъявляют экзаменатору в начале экзамена.
- Рекомендуется при подготовке к экзамену опираться на следующий план:
 - 1. Просмотреть программу курса, с целью выявления наиболее проблемных тем, вопросов, которые могут вызвать трудности при подготовке к экзамену.
 - 2. Темы необходимо изучать последовательно, внимательно обращая внимание на описание вопросов, которые раскрывают ее содержание. Начинать необходимо с первой темы.
 - 3. После работы над первой темой необходимо ответить на вопросы для самоконтроля и решить тестовые задания к ней. При этом для эффективного закрепления информации прорешать тест первый раз лучше без использования учебных материалов, второй раз с их использованием.
 - 4. И так далее по остальным темам.

II. План лабораторных занятий

Лабораторная работа 1. Предварительный анализ и определение требований к программному продукту.

Цель: освоение навыка выявления актуальной для разработки прикладной задачи. и выявления требований к разработке ПО.

Задание: сформулировать описание прикладной задачи для последующей разработки.

Этапы выполнения.

- 1. Определить предметную область, в которой предполагается разработка ПО.
- 2. Выделить прикладную задачу небольшого объема (около 5-7 внутренних функций).
- 3. Сформулировать описание выбранной задачи произвольным текстом так, как если бы ее предложил заказчик ПО.
- 4. Сформулировать вопросы анкеты.
- 5. Сформулировать к каждому вопросу варианты ответов, конкретизирующие предполагаемый ответ. Дополнить каждый вопрос возможностью дать ответ в свободной форме.
- 6. Сформулировать функциональные и нефункциональные (требования по качеству) требования к проектируемой программной системе в достаточно лаконичной форме, используя предложения вида «Программная система должна ...»
- 7. Провести анализ требований на непротиворечивость.
- 8. Оформить документ «Описание задачи» в соответствии с общими требованиями к созданию данного документа, включив в него ранее подготовленный текст.

Рекомендуемая литература: [1], [2], конспект лекций.

Лабораторная работа 2. Описание требований. Разработка технического задания на создание ПО.

Цель: освоение навыка описания функциональных и нефункциональных требований к ПО. **Задание:** разработать техническое задание на создание ПО.

Этапы выполнения.

- 1. Основываясь на документе описание задачи и ответах на анкету, определить перечень функциональных и нефункциональных требований к ПО, которые должны быть реализованы в разрабатываемом программном средстве.
- 2. Определить перспективы создаваемого программного продукта, интерфейсы его взаимодействия с имеющимся аппаратным и программным окружением.
- 3. Классифицировать требования и дать каждому требованию лаконичную формулировку, специфицировать номером, включающим в себя порядок и подчинение данного требования другим.
- 4. Дать характеристику будущих пользователей создаваемого ПО.
- 5. Оформить документ «Техническое задание (SRS-1)» в соответствии с общими требованиями к созданию данного документа, включив в него подготовленный материал.

Рекомендуемая литература: [1], [2], конспект лекций.

Лабораторная работа 3. Разработка функциональной спецификации программной системы.

Цель: освоение навыка детального описания функциональных требований к программному средству с учетом требований к качеству.

Задание: разработать функциональную спецификацию программного средства (ПС).

Этапы выполнения.

- 1. Для каждой требования, представленного в «Техническом задании», установить его приоритет (степень важности/очерёдности реализации).
- 2. Используя моделирование прецедентов (методология UML) для каждого требования дать детализацию каждой функции, учитывая как функциональные требования, так и требования к качеству ПС. Для чего:
 - а. определить основные элементы: **Действующие** лица и **Варианты использования**. Оформить материал в специальной таблице (приложение 2, таблица 3);
 - b. построить диаграмму прецедентов (вариантов использования);
 - с. описать каждый прецедент (спецификация прецедентов).
- 3. Оформить документ «Функциональная спецификация» в соответствии с общими требованиями к созданию данного документа, включив в него подготовленный материал.

Рекомендуемая литература: [1], [2], конспект лекций.

Лабораторная работа 4. Проектирование и описание пользовательского интерфейса.

Цель: освоение навыка детального описания функциональных требований к программному средству с учетом требований к качеству.

Задание: освоение навыка разработки и формального описания пользовательского интерфейса ПС.

Этапы выполнения.

- 1. Определить тип создаваемого пользовательского интерфейса:
 - d. Desk-приложение: однодокументный, многодокументный, тип "explorer" или отчет.
 - e. Web-приложение: одностраничный, многостраничный и т.п.
- 2. Определить перечень элементов управления будущего интерфейса, их свойства и назначение.
- 3. Продумать композиционное решение создаваемого интерфейса.
- 4. Оформить документ «Проектирование пользовательского интерфейса» в соответствии с общими требованиями к созданию данного документа, включив в него ранее подготовленный материал.

Рекомендуемая литература: [1], [2], конспект лекций.

Лабораторная работа 5. Проектирование архитектуры и структуры программного комплекса.

Цель: освоение навыка определения будущей архитектуры и структуры программного комплекса.

Задание: построить схему архитектуры проектируемого ПО и иерархию диаграмм, описывающих структуру программного комплекса.

Этапы выполнения.

- 1. Основываясь на диаграмме прецедентов и разработанном проекте пользовательского интерфейса, определить набор структурных элементов проектируемой программной системы, обладающих определенной функциональностью.
- 2. Если программная система не обладает вырожденной архитектурой цельна программа, описать взаимосвязи и взаимодействия элементов системы и представить описание архитектуры программного средства, а также его внутренние взаимосвязи в виде (на выбор):
 - а. Схемы, узлы которой представлены смысловыми пиктограммами, например, пользователи, компьютеры, серверы, базы данных и т.п.;
 - b. Диаграммы потоков данных.

Каждое графическое представление сопроводить соответствующими подписями и пояснениями.

3. Построить декомпозицию основных структурных элементов программной системы, используя нотацию IDEF0.

- 4. Построить модульное описание и описание взаимосвязей и взаимодействий модулей (частей) системы, используя нотацию IDEF0.
- 5. Оформить документ «Проектирование архитектуры и структуры программного комплекса» в соответствии с общими требованиями к созданию данного документа, включив в него ранее подготовленный материал.

Рекомендуемая литература: [1], [2], конспект лекций.

Лабораторная работа 6. Разработка плана тестирования ПС. Описание тестовых наборов.

Цель: освоить навык разработки документации для тестирования ПО.

Задание: разработка спецификации тестов для оценки реализации функциональных и нефункциональных требований к ПО.

Этапы выполнения.

- 1. Для каждого примитива качества, включенного в модель качества разрабатываемого ПО, определить набор тестов, способных проверить его корректную работу в различных условиях функционирования ПО.
- 2. Разработать спецификации каждого тестового набора, включив в нее указания на проверяемое требование (тестируемую функцию; тестируемый элемент) и определив входные данные и ожидаемые результаты.
- 3. Оценить полноту покрытия проводимого тестирования: каждому элементу наличия, имеющемуся в спецификации качества, должно соответствовать не менее одного теста, проверяющего реализацию данной функции, при этом формулировка тестируемой функции должна совпадать с формулировкой элемента наличия.
- 4. Если реализация элемента наличия проверяется одним тестом, то тестируемый элемент будет совпадать с тестируемой функцией; в противном случае, спецификации тестов для одной функции будут содержать различные тестируемые элементы.
- 5. Создать тестовые наборы для проверки корректной обработки исключительных ситуаций.
- 6. Оформить документ «Спецификация тестов» СТ в соответствии с общими требованиями к созданию данного документа, включив в него ранее подготовленный материал.

Рекомендуемая литература: [1], [2], конспект лекций.